Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

2,6-Bis(azaindole)pyridine: reactivity with iron(III) and copper(II) salts

Sibrina N. Collins, ${ }^{\mathbf{a}} \ddagger$ Stephen Taylor, ${ }^{\text {b }}$ Jeanette A. Krause ${ }^{\text {b }}$ and William B. Connick ${ }^{\text {b* }}$

${ }^{\text {a D Department of Chemistry, Claflin University, Orangeburg, SC 29115, USA, and }}$
${ }^{\mathbf{b}}$ Department of Chemistry, University of Cincinnati, OH 45221-0172, USA
Correspondence e-mail: bill.connick@uc.edu

Received 13 July 2007
Accepted 10 August 2007
Online 1 September 2007

1-[6-(1H-Pyrrolo[2,3-b]pyridin-1-yl)pyridin-2-yl]-1H-pyrrolo-[2,3-b]pyridin-7-ium tetrachloridoferrate(III), $\quad\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{5}\right)$ $\left[\mathrm{FeCl}_{4}\right]$, (II), and [2,6-bis(1H-pyrrolo[2,3-b]pyridin-1-yl- κN^{7})-pyridine- κN] bis(nitrato- κO)copper(II), $\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}\right)\right]$, (III), were prepared by self-assembly from $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ or $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and 2,6 -bis(1H-pyrrolo[2,3-b]pyridin-1-yl)pyridine [commonly called 2,6-bis(azaindole)pyridine, bap], $\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}$, (I). Compound (I) crystallizes with $Z^{\prime}=2$ in the $P \overline{1}$ space group, with both independent molecules adopting a trans-trans conformation. Compound (II) is a salt complex with weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ interactions giving rise to a zigzag network with π-stacking down the a axis. Complex (III) lies across a twofold rotation axis in the $C 2 / c$ space group. The $\mathrm{Cu}^{\text {II }}$ center in (III) has an $\mathrm{N}_{3} \mathrm{O}_{2}$ trigonal-bipyramidal environment. The nitrate ligand coordinates in a monodentate fashion, while the bap ligand adopts a twisted tridentate binding mode. $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions give rise to a ribbon motif.

Comment

Organometallic supramolecular structures and materials remain a popular area of interest because of their spectral and electrochemical properties, and are thus potentially useful as molecular devices, sensors and catalysts (James, 2003; Braga, 2003; Blake et al., 1999; Balzani \& Juris, 2001). A plethora of geometric frameworks, dependent on the coordination preferences of the metal ion and the nature of the bridging ligand, have been reported (Moulton \& Zaworotko, 2001). We were further inspired by the inorganic crystal engineering work reported by Mukherjee and coworkers (Mukherjee et al., 2003; Balamurugan et al., 2004), where $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding interactions proved a useful tool in forming supramolecular networks composed of $\left[\left(L^{3}\right) \mathrm{MnCl}_{2}(\mathrm{EtOH})\right]$ and $\left[\left(L^{6}\right) \mathrm{FeCl}_{3}\right]\left\{L^{3}\right.$ is 2[3-(2-pyridyl)pyrazol-1-ylmethyl]pyridine and L^{6} is methyl[2-(2-pyridyl)ethyl](2-pyridylmethyl)amine\}.

[^0]Our continuing research effort focuses on cyclometallating aryldiamine and polypyridyl ligands (i) as a mechanism to tune the electronic structure of square-planar platinum(II) and palladium(II) (Jude et al., 2005; Tastan et al., 2006), and (ii) as potential bridges to form more elaborate molecular architectures, such as triangles or larger polygons (Schweiger et al., 2001, 2002). Thus, an ongoing effort is to synthesize a library of appropriate ligands. The synthesis and structural characterization of 2,6-bis(azaindole)pyridine (bap), (I), is described here. Furthermore, in addition to complexes with $\mathrm{Pt}^{\mathrm{II}}$ and $\mathrm{Pd}^{\mathrm{II}}$, we would like to expand our studies to include other transition metals. In this report, we present our findings when $\mathrm{Fe}^{\mathrm{III}}$ and $\mathrm{Cu}^{\mathrm{II}}$ salts are reacted with (I).

(I)

(II)

(III)

Compound (I) (Fig. 1) crystallizes with two independent molecules in the asymmetric unit. Both molecules adopt a trans-trans conformation (see Table 1). Similar torsion angles are observed for the monoclinic (Bowes et al., 2005) and orthorhombic forms (Bessel et al., 1992) of $2,2^{\prime}: 6^{\prime}, 2^{\prime \prime}$-terpyridine (tpy) and 2,6-bis(5,6,7,8-tetrahydroquinol-2-yl)pyridine (the torsion angles about the $\mathrm{C}_{\text {quinolyl }}-\mathrm{C}_{\text {pyridine }}$ bond are -168.5 and 165.7°; Sasaki et al., 1998). On the other hand, 1,3-bis(7-azaindolyl)benzene (bab; Wu et al., 2001) and 1-bromo-3,5-bis(7-azaindolyl)benzene (babBr; Song et al., 2001) crystallize with noncoplanar azaindolyl rings, giving rise to a curved conformation (the torsion angles about the $\mathrm{N}_{\text {azaindolyl }}-$ $\mathrm{C}_{\text {benzene }}$ bonds are in the $20-45^{\circ}$ range).

Self-assembly of $\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with (I) forms the salt (bapH) FeCl_{4}, (II) (Fig. 2). The bapH ${ }^{+}$cation is protonated at atom N1. A typical intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bond occurs between atoms N 1 and $\mathrm{N} 5[\mathrm{~N} 1 \cdots \mathrm{~N} 5=2.873(3) \AA$ A . The through-space separations $\mathrm{N} 1 \cdots \mathrm{~N} 3$ and $\mathrm{N} 5 \cdots \mathrm{~N} 3$ are 2.722 (3) and 2.832 (2) \AA, respectively. The presence of the intramolecular hydrogen bond causes a conformational change in the bap molecule, giving rise to a cis-cis conformation [the torsion angles about the $\mathrm{N}_{\text {azaindolyl }}-\mathrm{C}_{\text {pyridine }}$ bonds
are 3.8 (3) and $0.3(3)^{\circ}$] with the azaindolyl rings essentially coplanar [the dihedral angles between the azaindolyl and pyridine rings are $3.32(1)$ and $1.29(1)^{\circ}$. The $\mathrm{Cl}-\mathrm{Fe}-\mathrm{Cl}$ angles (Table 2) are consistent with tetrahedral geometry about the $\mathrm{Fe}^{\text {III }}$ center. The $\mathrm{Fe}-\mathrm{Cl}$ distances are comparable to those in related complexes containing the $\mathrm{FeCl}_{4}{ }^{-}$anion (Zora et al., 1990; Chan \& Baird, 2004; Lewis et al., 2002).

Weak C-H • • Cl interactions (Aullón et al., 1998, Brammer et al., 2001), forming a zigzag network, are observed between the bapH ${ }^{+}$cation and the FeCl_{4}^{-}anion (see Table 3). π-Stacked interactions between neighboring cations run down the a axis; the interleaved layers are separated by $\sim 3.4 \AA$ [every second layer is aligned with a separation of 6.6695 (1) \AA (the a axis cell length)]. Typical $\pi-\pi$ interactions in organic compounds are less than $3.8 \AA$ (Janiak, 2000).

Focused on forming square-planar complexes where (I) adopts a tridentate binding motif, we turned our attention to $\mathrm{Ru}^{\mathrm{III}}$ and $\mathrm{Cu}^{\mathrm{II}}$ salts. Attempts to react (I) with $\mathrm{RuCl}_{3} \cdot n \mathrm{H}_{2} \mathrm{O}$ failed to yield a product. However, reaction of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot-$ $3 \mathrm{H}_{2} \mathrm{O}$ with (I) resulted in the formation of (bap) $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$,

Figure 1
The structure of (I), showing the atomic labelling scheme and 50% probability displacement ellipsoids. Both independent molecules adopt similar conformations, therefore only molecule A is shown.

Figure 2
The structure of (II), showing the atomic labelling scheme and 50% probability displacement ellipsoids.
(III) (Fig. 3a). The molecule crystallizes such that molecular and crystallographic twofold rotation symmetry coincide. The geometry about the $\mathrm{Cu}^{\text {II }}$ center is trigonal-bipyramidal, with an $\mathrm{N}_{3} \mathrm{O}_{2}$ environment. Both nitrate ions coordinate in a monodentate fashion through an O atom $[\mathrm{Cu}-\mathrm{O} 2=$ $2.1746(14) \AA$ and $\mathrm{Cu} \cdots \mathrm{O} 1=2.636(2) \AA]$. Bond lengths and angles (see Table 4) are typical and comparable to those in $\left[(\right.$ phtpy $\left.) \mathrm{Cu}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)\right]\left[(\right.$ phtpy $\left.) \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right]$ [phtpy is 4^{\prime}-(2-pyridyl)-2,2':6, $2^{\prime \prime}$-terpyridine; Padhi \& Manivannan, 2006] and $\left(\operatorname{tpyBr}_{2}\right) \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (Lam et al., 2006). $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (see Table 5) give rise to a ribbon motif.

The bap ligand in (III) adopts a twisted, tridentate binding mode $\left[\mathrm{C} 8-\mathrm{N} 3-\mathrm{Cu}-\mathrm{N} 1=23.0(1)^{\circ}\right.$; Fig. 3b]. Perusal of the literature shows that the related structures $[(\mathrm{tpyOH})$ $\mathrm{Cu}\left(\mathrm{OH}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ (Jeitler \& Turnbull, 2005), [(phtpy)$\left.\mathrm{Cu}(\mathrm{OH})\left(\mathrm{NO}_{3}\right)\right]\left[(\right.$ phtpy $\left.) \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\right]$ (Padhi \& Manivannan, 2006) and $\left(\operatorname{tpyBr}_{2}\right) \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}$ (Lam et al., 2006) sport a tridentate-bound tpy ligand; however, the tpy rings are nearly planar (the $\mathrm{C}-\mathrm{N}-M-\mathrm{N}$ torsion angles are less than 6°). The chelate distortion from planarity in bap is echoed by the closely related bab and $\mathrm{bab} R$ ligands in $(\mathrm{bab}) M \mathrm{Cl}$ and (babBr) $M \mathrm{Cl}(M=\mathrm{Pd}$ and Pt$)$ (with twisted geometry, having $\mathrm{C}-\mathrm{N}-M-\mathrm{N}$ torsion angles in the range $20-34^{\circ}$; Song et al.,

Figure 3
(a) The structure of (III), showing the atomic labelling scheme [symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$] and 50% probability displacement ellipsoids. (b) A view down the $\mathrm{Cu}-\mathrm{N} 3-\mathrm{C} 10$ axis, showing the ligand twist.
2001). For $(\mathrm{bab} R) \operatorname{Re}(\mathrm{CO})_{3}\left(R=\mathrm{H}, \mathrm{F}, \mathrm{CF}_{3}\right.$ and MeO$)$ complexes, the chelate takes on a folded butterfly geometry (Tani et al., 2004). Characteristic of these structures is the increased nonplanarity of the tridentate ligand (twist or butterfly conformations) as the progression tpy, tpyOH, tpyO, phtpy $\simeq \operatorname{tpyBr} r_{2}<$ bap, bab, bap R is made, consistent with a direct relationship between increased steric effects near the metal coordination plane and the degree of nonplanarity.

Experimental

Compound (I) was prepared by a modified procedure based on the synthesis of bab (Wu et al., 2001). 2,6-Dibromopyridine (8.6 mmol , 2.0407 g), 7 -azaindole ($18 \mathrm{mmol}, 2.1415 \mathrm{~g}$), potassium carbonate $(14.8 \mathrm{mmol}, 2.0526 \mathrm{~g})$ and cupric sulfate ($1.75 \mathrm{mmol}, 0.2792 \mathrm{~g}$) were added to a flask under an argon atmosphere. The mixture was heated with stirring for 4 h at 483 K . After cooling to room temperature, the resulting mixture was extracted with methylene chloride and water. The organic layer was separated, dried with MgSO_{4} and filtered, and the solvent volume was reduced. Hexanes were added to precipitate (I) as a white crystalline solid ($2.1 \mathrm{mmol}, 0.6700 \mathrm{~g}, 25 \%$ yield). Colorless crystals suitable for X-ray analysis were grown by slow evaporation of a methanol-methylene chloride solution.
$\mathrm{FeCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in methanol was layered over a solution of (I) in methylene chloride (1:1 molar ratio of reactants, 5 ml of each solvent) in a test tube. The test tube was covered with Parafilm. Crystallite formation occurred within a few hours at room temperature. Yellow X-ray quality crystals of (II) were harvested after 1-2 weeks.

In an analogous fashion, equimolar amounts of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ and (I) in methanol and methylene chloride, respectively, were allowed to react. Light-green X-ray quality crystals of (III) were obtained after 1-2 weeks.

Compound (I)

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}$
$M_{r}=311.34$
Triclinic, $P \overline{1}$
$a=6.6377(2) \AA$
$b=10.1397(3) \AA$
$c=21.9214(6) \AA$
$\alpha=76.609(1)^{\circ}$
$\beta=86.563(10)^{\circ}$

Data collection

Bruker SMART 6000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.787, T_{\text {max }}=0.965$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$	434 parameters
$w R\left(F^{2}\right)=0.122$	H -atom parameters constrained
$S=1.06$	$\Delta \rho_{\max }=0.32 \mathrm{e} \AA \AA^{-3}$
4847 reflections	$\Delta \rho_{\min }=-0.24 \mathrm{e}^{-3}$

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$ for (I).

$\mathrm{C} 5 A-\mathrm{N} 2 A-\mathrm{C} 8 A-\mathrm{N} 3 A$	176.4 (2)		$\mathrm{C} 5 B-\mathrm{N} 2 B-\mathrm{C} 8 B-\mathrm{N} 3 B$
$\mathrm{C} 15 A-\mathrm{N} 4 A-\mathrm{C} 12 A-\mathrm{N} 3 A-178.4$ (2)		C $15 B-\mathrm{N} 4 B-\mathrm{C} 12 B-\mathrm{N} 3 B-179.4$ (2)	

11609 measured reflections
4847 independent reflections
4215 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.122$
$S=1.06$
4847 reflections

$$
\begin{aligned}
& \gamma=90.004(1)^{\circ} \\
& V=1432.56(7) \AA^{3} \\
& Z=4 \\
& \text { Cu } K \alpha \text { radiation } \\
& \mu=0.72 \mathrm{~mm}^{-1} \\
& T=150(2) \mathrm{K} \\
& 0.35 \times 0.10 \times 0.05 \mathrm{~mm}
\end{aligned}
$$

Compound (II)

Crystal data
$\left(\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{5}\right)\left[\mathrm{FeCl}_{4}\right]$
$M_{r}=510.00$
Monoclinic, $P 2_{1} / n$
$a=6.6695$ (1) \AA 。
$b=23.2657$ (4) \AA
$c=13.3959$ (2) \AA
$\beta=100.312(1)^{\circ}$
Data collection
Bruker SMART 6000 CCD diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2003) $T_{\text {min }}=0.232, T_{\text {max }}=0.812$
$V=2045.07(6) \AA^{3}$
$Z=4$
$\mathrm{Cu} K \alpha$ radiation
$\mu=10.86 \mathrm{~mm}^{-1}$
$T=150(2) \mathrm{K}$
$0.19 \times 0.04 \times 0.02 \mathrm{~mm}$

Refinement
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.075$
H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.34 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.25 \mathrm{e}^{\AA^{-3}}$

Table 2
Selected geometric parameters ($\left(\AA^{\circ}{ }^{\circ}\right.$) for (II).

$\mathrm{Fe}-\mathrm{Cl} 4$	$2.1895(7)$	$\mathrm{Fe}-\mathrm{Cl} 2$	$2.1970(6)$
$\mathrm{Fe}-\mathrm{Cl} 3$	$2.1949(6)$	$\mathrm{Fe}-\mathrm{Cl} 1$	$2.1985(7)$
			$109.79(3)$
$\mathrm{Cl} 4-\mathrm{Fe}-\mathrm{Cl} 3$	$108.65(3)$	$\mathrm{Cl} 4-\mathrm{Fe}-\mathrm{Cl} 1$	$108.45(3)$
$\mathrm{Cl} 4-\mathrm{Fe}-\mathrm{Cl} 2$	$110.34(3)$	$\mathrm{Cl} 3-\mathrm{Fe}-\mathrm{Cl} 1$	$108.73(3)$
$\mathrm{Cl} 3-\mathrm{Fe}-\mathrm{Cl} 2$	$110.85(3)$	$\mathrm{Cl} 2-\mathrm{Fe}-\mathrm{Cl} 1$	

Table 3
Hydrogen-bond geometry $\left({ }^{\circ},{ }^{\circ}\right)$ for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 20 \cdots \mathrm{~N} 5$	$0.89(3)$	$2.04(3)$	$2.873(3)$	$156(2)$
$\mathrm{C} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	0.95	2.87	$3.692(2)$	146
$\mathrm{C} 19-\mathrm{H} 19 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	0.95	2.88	$3.718(2)$	147
$\mathrm{C} 13-\mathrm{H} 13 \cdots \mathrm{Cl} 2^{\text {iii }}$	0.95	2.85	$3.676(2)$	146
$\mathrm{C} 9-\mathrm{H} 9 \cdots \mathrm{Cl} 4$	0.95	2.73	$3.660(2)$	168

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (ii) $x, y, z-1$; (iii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.

Compound (III)

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{C}_{19} \mathrm{H}_{13} \mathrm{~N}_{5}\right)\right]$
$M_{r}=498.90$
Monoclinic, $C 2 / c$
$a=17.3858$ (12) \AA
$b=12.8324(8) \AA$
$c=8.4011(6) \AA$
$\beta=94.726(2)^{\circ}$
$V=1867.9(2) \AA^{3}$

Data collection
Bruker Platinum 200 diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 2003)
$T_{\text {min }}=0.913, T_{\max }=0.941$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.052 \quad 151$ parameters
$w R\left(F^{2}\right)=0.134$
$S=1.01$
2319 reflections
$Z=4$
Synchrotron radiation
$\lambda=0.77490 \AA$
$\mu=1.55 \mathrm{~mm}^{-1}$
$T=193$ (2) K
$0.06 \times 0.04 \times 0.04 \mathrm{~mm}$

10400 measured reflections 2319 independent reflections 2155 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.105$

H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.65 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\min }=-0.59 \mathrm{e}^{-3}$

Table 4
Selected geometric parameters $\left(\AA,^{\circ}\right)$ for (III).

$\mathrm{Cu}-\mathrm{N} 1$	$1.963(2)$	$\mathrm{Cu}-\mathrm{O} 2$	$2.1746(14)$
$\mathrm{Cu}-\mathrm{N} 3$	$2.117(2)$		
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 1^{\mathrm{i}}$	$176.05(8)$	$\mathrm{N} 1^{i}-\mathrm{Cu}-\mathrm{O} 2$	$86.84(6)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 3$	$91.97(4)$	$\mathrm{N} 3-\mathrm{Cu}-\mathrm{O} 2$	$136.42(4)$
$\mathrm{N} 1-\mathrm{Cu}-\mathrm{O} 2$	$90.30(6)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Cu}-\mathrm{O} 2$	$87.16(8)$

Symmetry code: (i) $-x+1, y,-z+\frac{1}{2}$.

Table 5
Hydrogen-bond geometry ($\left({ }^{\circ},^{\circ}\right.$) for (III).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C9-H9 $\cdots \mathrm{O}^{\text {ii }}$	0.95	2.39	$3.249(3)$	150
C6-H6 $^{\text {iii }}$	0.95	2.53	3.277 (3)	136
C7-H7 \cdots O3 $^{\text {iv }}$	0.95	2.39	$3.141(2)$	135

Symmetry codes: (ii) $-x+1,-y+1,-z$; (iii) $x-\frac{1}{2},-y+\frac{1}{2}, z-\frac{1}{2}$; (iv) $x-\frac{1}{2}, y+\frac{1}{2}, z$.

Initial refinement of (I) in $P \overline{1}$ yielded a structure solution with $R 1 \simeq 19 \%$. Subsequent refinements included the twin law ($\overline{1} 00,010$, $01 \overline{1}$) obtained from ROTAX (Parsons \& Gould, 2001) as implemented in CRYSTALS (Betteridge et al., 2003). The twin fraction ratio is $42: 58$. The N -bound H atom in (II) was located directly; the position and isotropic displacement parameters were refined. All remaining H atoms were either located or calculated and treated as riding $(\mathrm{C}-\mathrm{H}=0.95 \AA)$; the isotropic displacement parameters were defined as $1.2 U_{\text {eq }}(\mathrm{C})$.

For (I) and (II), data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003). For (III), data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT (Bruker, 2005). For all compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 2003); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL for (I), and SHELXTL and DIAMOND (Brandenburg, 2007) for (II) and (III); software used to prepare material for publication: SHELXTL.

SNC gratefully acknowledges the NSF-REU (grant No. CHE-0452387) and the John J. Alexander Undergraduate Summer Research Fellowship, University of Cincinnati, for support. WBC thanks the NSF (grant No. CHE-0134975) for their generous support. Data for (I) and (II) were collected on a SMART 6000 diffractometer; NSF-MRI funding (grant No. CHE-0215950) is gratefully acknowledged. Data for (III) were collected at Beamline 11.3.1 at the Advanced Light Source (ALS) through the SCrALS (Service Crystallography at Advanced Light Source) program. The ALS is supported by the US Department of Energy, Office of Energy Sciences Materials Sciences Division, under contract No. DE-AC0376SF00098 at Lawrence Berkeley National Laboratory.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GD3124). Services for accessing these data are described at the back of the journal.

References

Aullón, G., Bellamy, D., Brammer, L., Bruton, E. A. \& Orpen, G. A. (1998). J. Chem. Soc. Chem. Commun. pp. 653-654.

Balamurugan, V., Jacob, W. \& Mukherjee, J. (2004). CrystEngComm, 6, 396400.

Balzani, V. \& Juris, A. (2001). Coord. Chem. Rev. 211, 97-115.
Bessel, C. A., See, R. F., Jameson, D. L., Churchill, M. R. \& Takeuchi, K. J. (1992). J. Chem. Soc. Dalton Trans. pp. 3223-3228.

Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. \& Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.

Blake, A. J., Champness, N. R., Hubberstey, P., Li, W.-S., Withersby, M. A. \& Schröder, M. (1999). Coord. Chem. Rev. 183, 117-138.
Bowes, K. F., Clark, I. P., Cole, J. M., Gourlay, M., Griffin, A. M. E., Mahon, M. F., Ooi, L., Parker, A. W., Raithby, P. R., Sparkes, H. A. \& Towrie, M. (2005). CrystEngComm, 7, 269-275.

Braga, D. (2003). J. Chem. Soc. Chem. Commun. pp. 2751-2753.
Brammer, L., Bruton, E. A. \& Sherwood, P. (2001). Cryst. Growth Des. 1, 277290.

Brandenburg, K. (2007). DIAMOND. Version 3.1e. Crystal Impact GbR, Bonn, Germany.
Bruker (2003). SMART (Version 5.631) and SAINT (Version 6.45A). Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). APEX2 (Version 2.0-2) and SAINT (Version 7.23A). Bruker AXS Inc., Madison, Wisconsin, USA.
Chan, B. C. K. \& Baird, M. C. (2004). Inorg. Chim. Acta, 357, 2776-2782.
James, S. L. (2003). Chem. Soc. Rev. 32, 276-288.
Janiak, C. (2000). J. Chem. Soc. Dalton Trans. pp. 3885-3896.
Jeitler, J. R. \& Turnbull, M. M. (2005). Acta Cryst. E61, m1846-m1848.
Jude, H., Krause Bauer, J. A. \& Connick, W. B. (2005). Inorg. Chem. 44, 12111220.

Lam, A. K. Y., Abrahams, B. F., Grannas, J. J., McFadyen, W. D. \& O'Hair, R. A. J. (2006). J. Chem. Soc. Dalton Trans. pp. 5051-5061.

Lewis, G. R., Hubberstey, P. \& Sampson, C. L. (2002). Acta Cryst. E58, m331m333.
Moulton, B. \& Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.
Mukherjee, J., Balamurugan, V., Gupta, R. \& Mukherjee, R. (2003). Dalton Trans. pp. 3686-3692.
Padhi, S. K. \& Manivannan, V. (2006). Inorg. Chem. 45, 7994-7996.
Parsons, S. \& Gould, R. (2001). ROTAX. Version 26. University of Edinburgh, Scotland.
Sasaki, I., Daran, J. C., Aït-Haddou, H. \& Balavoine, G. G. A. (1998). Inorg. Chem. Commun. 1, 354-357.
Schweiger, M., Seidel, S. R., Arif, A. M. \& Stang, P. J. (2001). Angew. Chem. Int. Ed. 40, 3467-3469.
Schweiger, M., Seidel, S. R., Arif, A. M. \& Stang, P. J. (2002). Inorg. Chem. 41, 2556-2559.
Sheldrick, G. M. (2003). SADABS (Version 2.10) and SHELXTL (Version 6.14). Bruker AXS Inc., Madison, Wisconsin, USA.

Song, D., Wu, Q., Hook, A., Kozin, I. \& Wang, S. (2001). Organometallics, 20, 4683-4689.
Tani, K., Sakurai, H., Fujii, H. \& Hirao, T. (2004). J. Organomet. Chem. 689, 1665-1674.
Tastan, S., Krause, J. A. \& Connick, W. B. (2006). Inorg. Chim. Acta, 359, 18891898.

Wu, Q., Lavigne, J. A., Tao, Y., D’Iorio, D. \& Wang, S. (2001). Chem. Mater. 13, 71-77.
Zora, J. A., Sneddon, K. R., Hitchcock, P. B., Lowe, C. B., Shum, D. P. \& Carlin, R. L. (1990). Inorg. Chem. 29, 3302-3308.

[^0]: \ddagger Current address: Graduate School, University of Washington, Box 353770, 301 Loew Hall, Seattle, WA 98195, USA.

